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A general set of conservation equations and constitutive integrals for the dynamic 
properties of the rapid flow of a granular material consisting of slightly inelastic and 
slightly rough spherical particles is derived by following an approach used in the 
kinetic theory of dense gases. By taking moments of the translational and rotational 
particle velocities in the general transport moment equation and making the Enskog 
approximation, the singlet velocity distribution function is determined. As a result, 
the constitutive relations and coefficients such as stresses, energy fluxes, rates of 
translational and rotational energy interchanges, shear viscosity, spin viscosity, bulk 
viscosity and ‘thermal ’ conductivities are obtained. The present theory incorporates 
the kinetic as well as the collisional contributions for stresses and energy fluxes. 
Thus, it is appropriate for dilute as well as dense concentrations of solids. For the 
case of simple shear flow, there is favourable agreement between the theoretical 
predictions of stresses and both the experimental measurements and the results from 
computer simulations. 

1. Introduction 
In recent years, a number of kinetic theories based upon the approaches used in 

the kinetic theory of dense gases were developed for the rapid flows of granular 
materials; for example, Savage & Jeffrey (1981), Jenkins & Savage (1983), Ahmadi 
& Shahinpoor (1983), Lun et al. (1984), Jenkins & Richman (1985a, b), Farrell, Lun 
& Savage (1986), Lun & Savage (1986,1987), Nakagawa (1988) and Richman (1989). 
Other types of microstructural statistical theories based upon averaging techniques 
somewhat more rudimentary than that of the kinetic theory were also proposed, such 
as McTique (1978), Ogawa, Umemura & Oshima (1980), Shen & Ackermann (1982), 
Haff (1983), Hopkins & Shen (1986). Also, computer simulations using idealized 
granular particles were utilized to study the dynamics of granular flow (Walton 1983 ; 
Campbell & Brennen 1985; Campbell & Gong 1986; Walton & Braun 1986; Hopkins 
& Shen 1988; Werner & Haff 1988). The subject has been reviewed by a number of 
investigators such as Savage (1984), Richman (1986), Jenkins (1987) and Campbell 

Many common granular materials are frictional as well as inelastic. As a result, 
particles can rotate as well as translate under rapid rates of deformation. Such 
particle flow behaviour can be easily observed in many geophysical and industrial 
granular flows such as rock avalanche and granular chute flow. In many cases the 
dynamic effects of particle surface friction and rotary inertia can play some very 
important roles and may not be ignored. 

Lun & Savage (1987) developed a kinetic theory for a system of inelastic, rough 
spherical particles to study the effects of particle surface friction and rotary inertia. 

(1990). 
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They considered only the case of high bulk solids fractions where the major stress 
contributions are the collisional ones. However, at low solids concentrations the 
kinetic stress contributions become dominant. I n  the present study, their theory is 
extended to incorporate the kinetic stresses as well as the kinetic and collisional 
energy fluxes for a system of slightly inelastic and slightly rough spheres. We follow 
the general framework of the kinetic theory of Dahler & Theodosopulu (1975) and 
Theodosopulu & Dahler (1974a, b)  developed for a system of perfectly elastic, 
perfectly rough spheres. Conservation equations, constitutive relations and co- 
efficients are obtained explicitly by taking moments of translational and rotational 
particle velocities in the transport moment equation. Although the detailed 
computations of the moment method utilized here are quite involved, its basic 
concept is rather straightforward and is similar in essence to that used by Lun et al. 
(1984). The case of simple shear flow will be studied and the theoretical predictions 
of stresses will be compared with the experimental results of Savage & Sayed (1984), 
Hanes & Inman (1985) and Craig, Buckholz & Domoto (1986), and with the 
computer simulation results of Campbell (1989) and Walton & Braun (1986). 

2. Collisional model 
The collisional model proposed by Lun & Savage (1987) is employed in the present 

study. The same collisional model was used in the kinetic theory for plane flows of 
dense rough, inelastic circular disks by Jenkins & Richman (1985b). Two coefficients, 
e and p, are used to  characterize the collision process; e is the usual coefficient of 
restitution in the normal direction and /3 is called the roughness coefficient in the 
tangential direction. 

Consider a collision between two spherical particles 1 and 2 each of diameter u and 
having translational velocities c, and c,, angular velocities o, and w2, respectively. 
The total relative velocity a t  contact point g,, just prior to the collision is 

(2.1) 

where c,, = q-c, and SZ = w ,  + 02. During a collision the components of g12 are 
changed such that 

(2.2a, b )  

where k is the unit vector along the centreline from particle I to particle 2, and 
primed quantities denote values after the collision. 

Nakagawa (1988) attempted to improve the above collisional mode by assuming 
either rolling or complete slip in the contact zone of colliding disks. As a result, the 
roughness coefficient can be related to the coefficient of restitution, the friction 
coefficient and the collision angle by a simple expression. From physical 
considerations, experimental evidence and theoretical analysis of frictional surface 
deformations (Goldsmith 1960; Maw, Barber & Fawcett 1976, 1981), it is apparent 
that the coefficient of restitution depends on the inelasticity in the normal direction 
and the impact velocity whereas the roughness coefficient depends on the tangential 
inelasticity, particle surface friction and the impact velocity. According to Maw et al. 
(1976, 1981), the collisional process is much more complex than that proposed by 
Nakagawa (1988). For example, in realistic collisions there can be no slip, micro-slip 
or complete slip in the contact zone of the colliding spheres (see also Johnson 1982, 
1985). 

Lun & Savage (1986) studied the effects of an impact-velocity-dependent 

g,, = c12 -$ak x 51, 

(k.gi2) = -e(k.g,,L ( k  x gi2) = -P(k xg,,), 
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coefficient of restitution on stresses developed in a granular material consisting of 
inelastic, smooth spherical particles undergoing rapid deformation. The ooefficient of 
restitution e was assumed to decrease exponentially with increasing impact velocity, 
This greatly simplified the collision integrals ; however, the computations were still 
formidable. It is not difficult to realiee the complexity involved if the effects of 
particle surface friction and tangential inelasticity were included as well. For the 
sake of simplicity in the present treatment, both e and p are regarded as merely 
constant phenomenological coefficients whioh have been averaged over particle 
impact velocity and are appropriate for a particular range of granular temperatures. 

Generally speaking, the coefficient of restitution e can have a value in the range of 
0 < e < 1 while the roughness coefficient @ can have a value in the range of -1 6 
/3 < 1 (Lun & Savage 1987). The case of /3 = - 1 represents the collision of perfectly 
smooth particles, and increasing values of p represent the inoreasing degrees of 
particle surface friction. Cases for which 0 < p < 1 represent situations in which spin 
reversal occurs following the collitilion. The impact experiments of discs colliding with 
flat surfaces and the theoretical analysis of Maw et al, (1976, 1981), as well as the 
experimental measurements presented by Goldsmith (1960, p, 267) confirm the 
existence of positive values of @ (see also Johnson 1982). 

The case of p = 1 which represents the collision of perfectly elastic, perfeotly rough 
particles has been used as a standard model in the kinetio theories of gases and dense 
fluids to study the effects of rotary inertia and internal energies of complex molecules 
in a simple way (Chapman & Cowlipg 1979; Dahler & Theodosopulu 1975). The case 
of p = 0 corresponds to the collision model used in the computer simulations of 
Campbell (1989) in which the particle surface friction and inelasticity are suffioient 
to eliminate the post-collisional tangential relative velocities. 

Since we are considering the case of slightly inelastic and slightly rough particles 
such that the rate of energy dissipation of the system is small, the value for e is taken 
to be close to unity whereas the value €or /3 is taken to be close to 1 or - 1. The theory 
of Lun et al. (1984) and the computer simulation of smooth, inelastic spheres 
performed by Walton & Braun (1986) have shown that for the case of simple shear 
flow, the stresses predicted by the computer simulations agree quite well with those 
predicted by the theory even fsr the case of e being as low as 0.6 and for solids 
fractions up to 0.5. For concentrations near the closest random packing of the flow 
system, the assumption of binary collisions breaks down. 

Uaing (2.2a, b) in (2.1) the relationships between the pre- and post-collisional 
velocities can be shown to be 

(2.3) 
(2.4) 

C'l-C1 = -7  a c 12-(171-rle)k(k.c1,)+~2akxar, 

cb-c2 = 7 2  Cl, + (71 -7*) k(k.c,,) -k?, ak x 0 

and 

where ql = $(l + e ) ,  qz = $(1 + P ) K / ( 1  +K) and K = 4.1/ma2 is the non-dimensional 
parameter of moment of inertia. Parameter K can vary in value from zero, when the 
mass is concentrated at the centre of the sphere, to when the mass is uniformly 
distributed over the surface of the sphere. For the case of uniform solid sphere 
treated here, K = Q .  

18.2 
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3. Transport equations and constitutive integrals 

single-particle quantity $ is defined as 
Considering a fixed volume element dr  centred a t  r,  the ensemble average of the 

($) = ~ ~ $ f ( ' , ( r , c , w ; t ) d c d w ,  (3.1) 

where n is the local number density of the particles and f ( l ) ( r ,  c, w ; t) is the usual 
single-particle velocity distribution function. The rate of change of ( y i )  can be 
expressed as (Condiff, Lu & Dahler 1965; Lun et al. 1984; Lun & Savage 1987) 

(3.2) 
a 
- (4) = n(D$)  - v * (ncyi)  - v. @($I + x($) at 

where D$ = b - a$//& and b is the body force per unit mass. The second to  last term 
in (3.2) represents a collisional transfer 'flux' term 

(@C.; - @,) (el, * k) kf("(r - ink, c,, o1 ; I + ink, c,, 0, ; t )  
c,, . k > 0 

x dkdc, dc, dw, do,, (3.3) 

I e(+) x -in3 

whereas the last term represents a collisional ' source-like ' contribution 

x($) = i n q  ( $ ~ + $ ~ - $ l - $ Z ) ( C , 2 . k ) f ( 2 ) ( r - ~ k , c , , w , ; r , c , ,  w,;t) 
C , , . k > O  

x dk dc, dc, do, dw, (3.4) 

and f@'(r -ak ,  c,, w,  ; r ,  c,, w,  ; t )  is the pair distribution function. 
By taking $ in (3.2) to be the mass m, linear momentum mc, angular momentum, 

Iw, translational kinetic energy +c2 and rotational kinetic energy &Id, we obtain the 
conservation equations for the field variables, which are the mass, linear momentum, 
mean particle spin, and particle translational and rotational fluctuation kinetic 
energies : 

du 
dt 

p -  = Pb-V-P, 

do0 - n1-- - V . L + x ( I w ) ,  
dt 

dT 
dt 
$2 = - P : v u - v . q q , - ~ t  

d T  
dt 

9 2 = - L : voo - v . qr - Xr - wo *x(Iw). 

(3.5) 

(3.7) 

(3.9) 

It is worth noting that the mean particle spin is regarded as a field variable in the 
present analysis. As a result, the above set of mean field equations differs from that 
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given by Jenkins & Richman (1985 b)  for a system of inelastic, rough, circular disks 
in which the conservation of angular momentum is considered to be a higher moment 
equation. The issue of the inclusion of mean particle spin as a field variable was 
discussed at some length by McCoy, Sandler & Dahler (1966). 

In the above set of conservation equations p = mn = vpp is the bulk mass density, 
v is the bulk solids fraction defined as the ratio of the volume of solids to the total 
volume, pp is the mass density of a particle, u = ( c )  is the mean bulk velocity, and 
wo = ( w )  is the mean particle spin velocity. Furthermore, @T, = #m<C2) is the 
mean translational fluctuation kinetic energy where C = c- u,  and $T, = g( W Z )  is 
the mean rotational fluctuation kinetic energy where W = w-wo. 

The stress tensor P, the angular momentum flux L,  the translational energy flux 
qt and the rotational energy flux qr are each made up of the sum of a kinetic part and 
a collisional transfer part denoted by subscripts k and c respectively; thus 

Pk =p(CC),  P, = f l (mC);  L, = nl(Cw>, L, = fl(IW); 

qt, = ~ ~ ( c z c ) ,  qtc = e(#mcz); qr, = hr(wc), qrc = e(ywz). 
The term ~(10) is the rate of collisional transfer of angular momentum due to the 

difference between the local mean spin and the rate of rotational deformation of the 
bulk material (Lun & Savage 1987). The rate of translational kinetic energy 
interchange per unit volume is defined as Xt = -x($mcz)  and the rate of rotational 
kinetic energy interchange per unit volume is defined as xr = -x(gd). 

4. Moment method 
Following the approach of Dahler & Theodosopulu (1975) and Theodosopulu & 

Dahler (1974a, a), the singlet distribution functionf") may be written in the form as 

f(1) = f'"(l+g5), 
where g5 < 1 and 

is the local equilibrium distribution function. The presentf'O) differs slightly from the 
equilibrium distribution functions used for the case of perfectly elastic and perfectly 
rough spheres by Chapman & Cowling (1970), Condiff et al. (1965) and Theodosopulu 
& Dahler (1974a, b) .  In those cases, energy is conserved and there is equipartition of 
the mean translational and rotational fluctuation kinetic energies. Here different 
degrees of energy dissipation due to particle inelasticity and surface friction are 
considered and in general this kind of equipartition of energy would not be satisfied. 
The form of (4.2), which is written explicitly in terms of the translational and 
rotational granular temperatures, allows for varying degrees of energy dissipation 
and in turn allows for different ratios of translational and rotational fluctuation 
kinetic energies. 

The present analysis is based upon the assumption that the rate of energy 
dissipation is small ; so that the non-dimensional parameter defined by Savage & 
Jeffrey (1981) as the ratio of the characteristic mean relative shear velocity to the 
r.m.s. of the particle translational fluctuation velocity, R, = (adu/dy)/(C2)i, is 
small. As a result, the perturbation term g5 which is basically of the order of R, would 
be less than unity. This implies that wo which is of the same order as duldy is also 
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small, hence we may neglect second- and higher-order terms, such as (duldy), and ui. 
As a result, the form of the singlet velocity distribution function from (4.2) can be 
expressed as 

n( 1 +Iw, .w/ (mT, ) )  f'O'(r,c,w;t) = . (4.3) 

The perturbation 9 may be approximated by the trial function (see Dahler & 
Theodosopulu 1975) 

where P: is the symmetric and traceless kinetic stress tensor defined as 

Pz = p([Cq*)  and [ C q *  = CC-&'2S. 

The bracket [ ]* represents the traceless part of the tensor enclosed and S is the 
identity tensor. The complete kinetic stress tensor can be written as 

Pk=pq6+P: 

where pT, may be called the kinetic normal pressure. 
The terms in (4.4), which constitute only the first approximation to the distribution 

function, are known to provide an adequate description of the transport processes. 
They correspond to the first terms in a complete infinite series such as the Sonine 
polynomial. The higher-order terms in the complete series were found to alter by only 
a few percent the numerical values of various transport coefficients such as shear 
viscosity and thermal conductivity (Condiff et al. 1965; Chapman & Cowling 1970). 
Similar effects are anticipated for the case of slightly inelastic and slightly rough 
particles treated here. 

The perturbation function 9 used in the theory of Dahler & Theodosopulu (1975, 
equation 1) has four terms in addition to those given in (4.4). Their first two terms, 
involving T,  and T,, were formed to account for the so-called relaxation phenomenon 
between the rotary and translatory kinetic energies based upon the assumption of 
equipartition of energy. Since we consider different ratios of translational and 
rotational temperature where equipartition of energy is not obeyed in general, those 
two terms are irrelevant in the present context. Further discussion of this aspect can 
be found in the Appendix. The term which depended on the kinetic angular 
momentum flux L, is basically a second-order term in the velocity gradient. This is 
because L, is a function of the gradient of mean spin 0,; however, w,, is proportional 
to the gradient of velocity. To be consistent with the first-order approximation in the 
velocity gradient treated here, this term is neglected. The last term in their theory, 
which depended on (wo.w) ,  is accounted for in the present analysis; however, not in 
9 in (4.4) but in (4.3) instead. 

We make the Enskog approximation such that we have 

f(2)(r-~~ak,C1,W1;r+~uk,C2,W2;t) 

x q0(u ; v) f y r  -+Yak, c,, w1 ; t p ( r  + $(Tk, c,, 0, ; t ) ,  (4.5) 

where g,(u ; v )  is the equilibrium radial distribution function at  contact. The radial 
distribution function proposed by Lun & Savage (1986) is adopted in the present 
study and it is written as 

qo(u)  = (1 - v/vm)-5""'2, (4.6) 
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where v, represents the maximum possible solids fraction of the system. For finite 
granular flow systems such as some of the shear cell tests on polystyrene beads and 
glass beads conducted by Savage & Sayed (1984) and Hanes & Inman (1985), the 
values of v, can be as low as about 0.55 depending upon the size and geometry of the 
shear space in the test devices. For the closest random packing of spheres v, is about 
0.64, while for the closest regular packing v, is 0.7404. 

The present moment method for determining the singlet distribution function and 
subsequently the constitutive relations is utilized in the same spirit as some of the 
well-known analytical methods such as the Ritz-Galerkin integral method for the 
study of vibrations and the von Karman momentum integral method for the study 
of boundary layers, as opposed to the common perturbation methods. Roughly 
speaking, it is a method whereby an appropriate trial function is assumed and its 
coefficients are solved by satisfying the corresponding higher moment equations. In 
the present case, the trial function is q5. Once the coefficients are determined through 
the detailed balance of terms in the linearized moment equations, the trial function 
essentially represents the best possible linear approximate solution. 

The quantities Pz, qt, and q,, in (4.4) can be obtained by satisfying the moment 
equations which are generated by taking ~ to be the higher moments of particle 
translational and rotational velocities such as $[cc]*, $c2 and gw2c in (3.2) 
respectively. By using arguments of tensorial isotropy and flux homogeneity, and 
retaining only the first-order terms of the mean velocity gradient, the solids 
concentration gradient, the translational and the rotational temperature gradients, 
and neglecting the unsteady terms (Chapman & Cowling 1970, p. 120)) we obtain a 
closed set of simultaneous equations which we can solve for Pz, qt, and qr,. Thus we 
find 

PZ = -2yu,s, (4.7) 

where y = 5m(T,/z)i/16a2, h = 75m(T,/z)i/64g2 and S = ~ ( U ~ , , + U , , ~ ) - ~ ~ , ~ ~ ~ ~ .  The 
expressions for y and A may be identified as the shear viscosity and thermal 
conductivity for perfectly elastic and smooth particles at dilute concentrations. The 
symbol yk may be called the kinetic shear viscosity for the case of slightly inelastic 
and slightly rough particles. 

Lun et al. (1984) presented a term proportional to the gradient of particle number 
density (i.e. Vn) in their kinetic energy flux equation for smooth particles. As pointed 
out by Lun et al., such a term contained factor of (1 - ql) which had been assumed 
to be small and therefore was basically a higher-order term. A recent study of 
granular shute flows by Johnson, Nott & Jackson (1990) using the theory of Lun 
et al. (1984) found that the Vn term was indeed smaller than the other terms in the 
expression. Similar terms were found in the kinetic translational and rotational 
energy fluxes in (4.8) and (4.9) respectively for rough spheres. For uniformity in the 
order of terms in all constitutive relations they are not presented. 
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The functions r, are as follows: 

r, = 3 ~ ~ a , - + ~ a , ,  r2 = $+3a,+&a7vgO, r, = $a2aa+$+a,a6vgo, 

r, =&3a5+&la7vgo, r5=&,a,+&,a,vg0, 
where 

Using (4.1)-(4.9) in (3.4) and (3.5), we obtain the various constitutive relationships 
as defined earlier in $3. The kinetic and collisional contributions to the total stress 
tensor are 

Pk = pT,6-2pks, (4.11) 

256 
= 471 upgo ? '-%2vl + 372) p k  ' 9 0  s - ~ p v 2 8 0 [ 7 1  v .  us+%4% + 372) s1 

-- 192p2pv2goS x (200-V x u ) .  (4.12) 
5lt 

The total stress tensor may be written as 

P = [pT,( 1 +4q1 vg,) -pb  v. u] s- 2ps s- @ x (200-V x 24). (4.13) 

The bulk viscosity p,,, shear viscosity ,us and the spin viscosity [ are given as 

(4.14) 

In general the total stress tensor is anisotropic because rough particles with rotary 
inertia are being considered. 

The kinetic translational energy flux qt, is obtained previously in (4.8) and the 
collisional flux of translational energy qt, is found to be 

Therefore the total translational energy flux may be written as 
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Similarly, the kinetic rotational energy flux qrk is given in (4.9) while the collisional 
flux of rotational energy qr, is 

As a result, the total rotational energy flux is 

qr = ( Z )  l+'vgo q r , - ~ p v g 0 u V T .  

(4.19) 

(4.20) 

The rate of collisional transfer of angular momentum is expressed as 

X ( h )  = -25(200-V xu) .  (4.21) 

The kinetic and collisional angular momentum fluxes, L, and L,, are found to be zero. 
The present analysis has been based upon the assumption of small R, which implies 

small inelasticity and roughness. The expression for the collisional rate of 
translational kinetic energy interchange per unit volume carried out to the same 
order of approximation as the expressions for stress and energy fluxes is 

(4.22) 

Similarly, the expression for the collisional rate of rotational kinetic energy 
interchange per unit volume is 

(4.23) 

Terms such as ( 1  -v l )  V - u  were neglected in (4.22) and (4.23), for they are basically 
of higher order than the leading terms. Note that xt and xr incorporate not only the 
energy dissipation from inelasticity and surface friction associated with the 
coefficients e and /3 but also the possible exchange between the translational and 
rotational kinetic energies. 

By taking /3 = - 1 ,  i.e. qz = 0, in (4.7)-(4.23) the results of Lun et al. (1984) for 
slightly inelastic, perfectly smooth particles are recovered. If we, further, take e = 1 
corresponding to perfectly elastic and perfectly smooth particles, the present results 
reduce to the classical results of the first-order approximation from the dense smooth 
hard-sphere kinetic theory (see Davis 1973; Chapman & Cowling 1970). If we 
consider the limits of e = 1 and /? = 1 corresponding to perfectly elastic and perfectly 
rough particles, (4.7)-(4.23) reduce to most of the results obtained by Theodosopulu 
& Dahler (1974b) except for the bulk viscosity p,, and the collisional flux of 
translational energy qt,. A discussion of the discrepancies is presented in the 
Appendix. 

5. Simple shear flow 
We now consider the case of a simple shear flow of u = u ( y ) e ,  having uniform p,  

T,, T,  and constant shear rate duldy. Under these conditions, the mean spin equation 
(3.7) and the rotational fluctuation kinetic energy equation (3.9) reduce to 

~ ( I o )  = 0 and xr = 0. (5.1 a, b )  
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From (4.23) and (5.lb), we find that the ratio of the mean rotational to 
translational fluctuation kinetic energy is given as 

The same temperature ratio was obtained by Lun & Savage (1987) and is plotted here 
as a function of the roughness coefficient /3 in figure 1 .  For /3 = - 1,  the particles are 
perfectly smooth and all the fluctuation energy is in the translational mode. The 
frictional dissipation and the energy exchange between the rotational and 
translational modes increases with increasing /3. For /3 = 1, the particles are perfectly 
rough, perfectly elastic and no energy dissipation occurs. As a result, there is 
equipartition of fluctuation kinetic energy between the rotary and translatory 
modes. 

The translational fluctuation kinetic energy (3.8) reduces to  a balance between the 
shear work and the rate of translational kinetic energy interchange : 

du 
P,,-+x, = 0. 

dY 
(5.3) 

Energy is supplied from the mean flow to maintain the translational and rotational 
velocity fluctuations. 

From (4.21) and (5.1 a ) ,  the mean spin is found to be equal to  the rate of rotational 
bulk deformation : 

0, = p x u .  

As a result, the stress tensor in (4.13) remains symmetric in this particular case and 

where P,, = PVy = Pzz and P,. = P,,. From (5.3), (5.4) and (4.22), we obtain the 
expressions for the non-dimensional shear stress and normal stress, and the 
parameter R, : 

where 

(5.5) 
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FIGURE 1. 
B 

Variation of specific kinetic energy ratios, T,/T,, with roughness coefficient 8. 

0 0.1 0.2 0.3 0.4 0.5 0.6 

FIGURE 2. Variations of non-dimensional (a) normal stress and (a) shear stress with solids fraction 
v for the case of simple shear. Comparison of present theory for e = 0.8 and v, = 0.55 (curves) with 
experiments of Savage & Sayed (1984) using polystyrene beads: 0, PSI, 1.1 mm; 0,  PIIA, 
1.32 mm; 0,  PIIB, 1.32 mm. 

V V 

5.1. Comparison with data from experiments and computer simulations 

Savage & Sayed (1984), Hanes & Inman (1985), Hanes (1983) and Craig et al. (1986) 
performed experiments using annular shear cells which were capable of measuring 
shear and normal stresses as functions of solids concentration and shear rate. 
Different boundary conditions were used in the shear cell devices. Savage & Sayed 
firmly attached very coarse sandpaper having sand grains approximately the same 
size as the test particles to the top and bottom boundaries of the annular shear 
region. Hanes & Inman (1985) and Craig et al. (1986) glued particles the same as the 
test particles onto the top and bottom boundaries of the shear zone. Dry spherical 
glass beads, polystyrene beads and carbon steel spheres were among the materials 
tested. 

The experimental data for stresses employed in the following comparisons are 
those measurements which were recorded at the highest shear rates investigated for 
each particular solids fraction of material tested. This serves to minimize the 
influence of quasi-static effects which can occur at low shearing rates of bulk 
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0 0.1 0.2 0.3 0.4 0.5 0.6 
V 

FIGURE 3. Variations of ratio of characteristic mean shear velocity to fluctuation velocity R, 
with roughness coefficient /3 for the case of simple shear where e = 0.8 and v, = 0.55. 

materials. As a consequent, data which may best represent the shearing of bulk 
material in the grain inertia regime are used to compare with the predictions of the 
present kinetic theory for rapid flow. Measurements of the normal stress applied a t  
the top boundary of the annular shear zone are also used for the comparisons. 

First, the stresses predicted by the present analysis are compared with those 
obtained by Savage & Sayed (1984) in shearing polystyrene beads in tests PS18-21 
and P23-31. The experimental results are shown in figure 2 where the non- 
dimensional normal and shear stresses are plotted versus the solids fraction v. The 
solids fraction for maximum packing of polystyrene beads in those tests was found 
to be about 0.55. Thus, we set v, = 0.55 in (4.6). Little information about the values 
of e and /3 for both the glass beads and polystyrene beads is available. A value of 
e = 0.8 is probably in the appropriate range for the polystyrene beads. Calculations 
using the present theory for cases of j3 = - 1, -0.8 and -0.5 are shown in the figure. 
In general, there is substantial agreement between the predictions and the 
experimental results, especially at  solids fractions less than 0.5. Although the 
polystyrene beads may be relatively smooth to start with, the coarse sandpaper on 
both the top and bottom boundaries used by Savage & Sayed would probably cause 
microfractures on the particle surface thus resulting in an increase of individual 
particle surface friction. 

Figure 3 shows the variation of the parameter R, with v for the comparisons 
considered above. The curves are similar to those predicted by the theory of Lun 
et al. (1984) and those obtained by Campbell & Brennen (1985) in their computer 
simulations of idealized disk-like granular materials. The parameter R, increases with 
increasing v .  Even though most kinetic theories assume R, to be small, for computer 
simulations and most realistic granular flow systems with high concentrations of 
solids and relatively low values of e ,  R, can be of order one. The curves also show an 
increase in R, with increasing p. This is anticipated since an increase in roughness 
coefficient j3 represents a decrease in translational temperature due to corresponding 
increases in rotational temperature and energy dissipation caused by friction and 
tangential inelasticity. 

Next, the stresses measured by Savage & Sayed (1984) and by Hanes & Inman 
(1985) in shearing dry glass beads are compared with those predicted by the theory. 
The mean diameter of the glass beads tested by Savage & Sayed was 1.8 mm while 
the ones tested by Hanes & Inman were 1.85 mm and 1.1 mm. The experimental 
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FIGURE 4. Variations of non-dimensional (a) normal stress and ( b )  shear stress with solids fraction 
v for the case of simple shear. Comparison of present theory for e = 0.95 (-, v, = 0.55; ----, 
v, = 0.64) with experiments on Ballotini glass beads (Hanes & Inman 1985 : 0 ,  1.85 mm; 0 ,  
1 .1  mm; Savage & Sayed 1984: 0, 1.8 mm). 

results are shown in figure 4. The maximum solids fraction for closest packing of 
1.8 mm and 1.85 mm glass beads in their respective shear cells was found to be about 
0.55 whereas that for the 1.1 mm beads was 0.64. Lun & Savage (1986) conducted 
experiments to measure the coefficient of restitution for glass beads with diameters 
ranging from 2.0 to 2.5 mm. The mean coefficient of restitution was found to be 
about 0.95 over a range of particle impact velocities. This value of e is consistent with 
the data presented by Goldsmith (1960). According to the estimation made by Lun 
& Savage (1986), the range of impact velocities experienced by the particles in the 
shear cell experiments of Savage & Sayed (1984) and Hanes 6 Inman (1985) is about 
the same as that measured in the experiments on the coefficient of restitution. Note 
the misprint of v in the mean particle impact velocity given by Lun & Savage (1986) ; 
for the case of simple shear the expression should be written as 

24 
RH 

q = +go[(vm/v)f-  13 @. 

Several representative values of p are used in the simple shear calculations; i.e. 
/3 = - 1, -0.8, -0.5 and 0. The solid curves were calculated using v, = 0.55 and 
should be compared with the data from testing 1.8 mm and 1.85 mm mean diameter 
glass beads. The experimental results for the 1.85 mm glass beads fall within the 
range of stresses as predicted by the theory whereas those for the 1.8 mm glass beads 
are found to be much lower than both. As pointed out previously by Lun et al. (1984), 
glass beads are brittle; when they are sheared at  high shear rates under high loads, 
the surface of each bead is gradually roughened as a result of the multitude of 
collisions it experiences and the minute fractures that occur. Thus, one would expect 
the measured stresses to be lower than those of smooth particles. According to the 
present comparisons, the stresses measured in shearing 1.8 mm mean diameter glass 
beads are even lower than those predicted for the case of p = 0. In view of this, such 
low values of stresses measured were probably caused not only by high particle 
surface friction alone but, additionally, partly by slip at the top and bottom 
boundaries in the annular shear region. 
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FIGURE 5, Non-dimensional (a) normal stress and (21) shear stress versus solids fraction v for the case 
of simple shear. Comparison of present theory for e = 0.88 and /3 = -0.5 (curves) with experiments 
on shearing carbon steel spheres (Craig et al. 1986). 

The stresses measured in shearing 1.1 mm mean diameter glass beads show a 
variation with u which is quite different from the predictions (i.e. the dashed curves 
for u, = 0.64) and the other measurements for larger beads. It is unclear what the 
cwse of such a peculiar variation in the stresses would be. 

Figure 5 compares the theoretical predictions with the experimental measurements 
obtained by Craig et al. (1986) in shearing carbon steel spheres at different shear 
rates, solids concentrations and shear zone thickness, H .  The mean values of the non- 
dimensional shear layer thickness, H/a, are shown in the figures. The solids fractions 
at maximum closest packing were measured for the different H tested. Unfortunately 
the coefficient of restitution of the particles was not determined. Nonetheless, by 
estimating the mean particle impact velocity for the range of the shear rate tested 
and inferring from experimental results presented by Goldsmith (1960), the mean 
coefficient of restitution is found to be about 0.88. A value of -0.5 is used for p. 

In figure 5, it is interesting to note that the stresses measured in the tests using a 
relatively large shear layer thickness H are higher than those for small H ,  and 
furthermore they are closer to the theoretical predictions. One should note that at  
high solids concentrations such as those tested in the experiments, the particles 
would probably experience simultaneous multiple collisions and frictional rubbing 
which the present theory has neglected. Savage (1991) found a similar reduction in 
stresses in his recent computer simulation study of the effects of shear layer thickness 
on stresses developed in the Couette flow of an assembly of idealized smooth spheres. 
The decrease in stresses with decreasing H found by Craig et al. (1986) could be 
caused by a number of factors such as slip at  the top and bottom solid boundaries, 
increase in correlations between the particle velocities and the layering effects of 
particles. 

Campbell (1989) used a computer simulation program to obtain the stresses 
developed in simple shear flow of idealized spherical particles. Moving periodic image 
cells were applied a t  the top and bottom boundaries while stationary periodic image 
cells were used for all the side boundaries of the control volume. In effect, the 
program may be viewed as a simulation of an infinite medium of bulk materials 
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FIGURE 6. Non-dimensional (a, b )  normal stresses and (c) shear stress versus solids fraction v for the 
cases of simple shear. Comparison of present theory (solid curves) for B = 0 and v, = 0.64 with 
computer simulations of Campbell (1989) at: D, e = 1 ; 0, e = 0.8; 0, e = 0.6; 4, e = 0.4. 

undergoing simple shearing flow and the control volume represents only a small 
region within the shear zone. For this reason, a value of v, = 0.64 is used for the 
present calculations. The collision model used by Campbell (1989) is that  the particle 
surface friction and inelasticity are sufficient to eliminate the post-collisional 
tangential relative velocities. As discussed earlier, this model corresponds to  the case 
of /3 = 0 in the present context. 

Unlike the physical experiments of Savage & Sayed (1984), Hanes & Inman (1985) 
and Craig et al. (1986) where only one component of the normal stresses, namely Pug, 
was measured, the computer simulation program can obtain all three (i.e. P,,, Pvy, 
Pzz). The results of Campbell (1989) and Walton & Braun (1986) indicated that the 
normal stresses were anisotropic while the present theory predicts isotropic stresses. 
The severity of the anisotropy between different components of the normal stresses 
was found to decrease with increasing v and increasing e .  The component P,, plotted 
in figure 6(a) is the largest normal stress among the three. The component Puy is 
shown in figure 6(b). The comparisons of the theoretical predictions with the 
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FIGURE 7. Ratio of shear to normal stress, (a) P,, and ( b )  Pgv, versus solids fraction u for the case 
of simple shear. Comparison of present theory (solid curves) for p =  0 and v, = 0.64 with computer 
simulations of Campbell (1989) at: D, e = 1 ; 0 ,  e = 0.8; 0, e = 0.6; Q, e = 0.4. 

numerical results for P,, differ only slightly from those of P,, and hence are not 
presented here. The variation of the shear stress Pzy with v is shown in figure 6(c). 

Although the present theory is expected to be best suited to cases of /? close to - 1, 
it is interesting to see that in general there is good agreement between the predictions 
and a number of simulation results, as shown in figure 6. At a solids fraction of 0.01, 
the stresses obtained by Campbell (1989) are much higher than those predicted by 
the theory; the present predictions for v = 0.01 are shown as the end points of the 
curves. In the high-solids-fraction region, there exist a few puzzling irregularities in 
the simulation results. For example, a t  v = 0.45 the shear and normal stresses 
obtained for e = 0.4 are higher than those of e = 0.6 and 0.8. Similar anomalies can 
also be found a t  solids fractions such as v = 0.4, 0.5 and 0.55. Such irregularities are 
not seen in the present theoretical predictions. The reason for the discrepancies is not 
clear a t  the present time. 

Figures 7 (a)  and 7 ( b )  show respectively the variations of the ratios of shear stress 
to normal stress, namely IPzul/Pzz and ~Pzy~/Puy, with v. The simulation results for the 
two ratios exhibit significant differences which were basically caused by the 
anisotropies in the normal stresses or in other words the temperatures. This is for the 
same reason as for the discrepancies between the numerical results and the present 
theory which assumes an isotropic temperature distribution. 

Next, the theoretical predictions are compared with the computer simulation 
results obtained by Walton & Braun (1986) as well as those of Campbell for e = 0.8. 
Walton & Braun used perfectly smooth (i.e. /? = - 1) spherical particles in the 
simulation program. The data employed here are the results for a constant shear rate 
of 10 s-l. For brevity, the results for the components P,, and P,, obtained by Walton 
& Braun were not shown here. They behave more or less like those of Campbell 
(1989). In general, there is reasonable agreement between the predicted stresses and 
the results of Walton & Braun, as shown in figure 8. At relatively high concentrations 
of solids, the stresses obtained by Walton & Braun are somewhat lower than the 
predictions. The reason for the low values of stresses may be that Walton & Braun 
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FIQURE 8. Non-dimensional (a) normal stress and ( b )  shear stress versus solids fraction v for the case 
of simple shear. Comparison of present theory (v, = 0.64) (curves) with computer simulations for 
e = 0.8: 0 ,  Walton t Braun (1986), B = - 1; 0,  Campbell (1989), B = 0. 

used an impact-time-dependent soft collision model. As a result, the non-dimensional 
stresses a t  a particular solids concentration could vary with the shear rate. Such a 
phenomenon is evident in some other simulations done by Walton & Braun using 
different shear rates. 

6. Conclusion 
The present analysis extends the kinetic theory for rapid granular flow of Lun & 

Savage (1987) to incorporate the kinetic contributions for stresses as well as the 
kinetic and collisional energy fluxes for the case of slightly inelastic, slightly rough 
spherical particles. For general flow problems, knowledge of the energy fluxes is 
especially important. The theory is appropriate for dilute as well as dense 
concentrations of solids. The case of simple shear flow is examined here in detail. 
Generally speaking, there is favourable agreement between the theoretical 
predictions of stresses and the experimental measurements, as well as the computer 
simulation results. The increase in dissipation due to particle surface friction and 
tangential inelasticity cause the translational granular temperature to decrease, 
hence lower stresses are incurred. 

One area to which the present theory may be extended is the anisotropic stress 
phenomenon. For simple shear flow, the theory predicts isotropic stresses whereas 
the numerical simulation results of Campbell (1989) and Walton & Braun (1986) 
indicate that the stresses are anisotropic. It is likely that the singlet velocity 
distribution function with an anisotropic partition of granular temperatures will be 
required in the analysis. 

With proper boundary conditions, the present theory can be applied to solve a 
number of interesting problems such as granular chute flows under the influence of 
gravity. The question of boundary conditions next to a solid boundary and a free 
surface requires further investigation. 
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Appendix. Discussion of the results for bulk viscosity and collisional flux 
of translational energy 

For a system of perfectly elastic, perfectly rough dense hard-sphere gases, 
Theodosopulu & Dahler (1974b) obtained the following result for the bulk (or 
volume) viscosity : 

pb = 32 
v*g0  

where T = $(T,+T,). The last term in (A 1)  (which will be referred to as the 
volumetric term) corresponds exactly to the present result for bulk viscosity given 
in (4.14) for e = 1. The only difference between (A 1) and (4.14) is simply the presence 
of the first term in (A 1). It is worth noting that this term (which will be referred to 
as the relaxation term) was derived basing upon the a priori assumption of 
equipartition of energy and from the first two terms involving and T, in the 
perturbation function g5 used by Dahler & Theodosopulu (1975, equation l),  
Theodosopulu & Dahler (1974b). 

For a system of dilute rough-sphere gases, the volumetric term drops out and (A 1)  
reduces to the familiar result (Chapman & Cowling 1970) as v+ 0, go + 1,  

1 
3 2 8  

pb = - (mkT/.rc)i ( K +  1)'/K 

The stresses in this case can then be expressed as 

P = ( p T - p b V . u ) 6 - 2 p S  

The bulk viscosity is often interpreted as a relaxation phenomenon because of its 
origin in the kinetic theory of dilute rough-sphere gases as discussed in Chapman & 
Cowling (1970). According to Chapman & Cowling pb arises because in an expansion 
or contraction the work done by the pressure alters the translatory energy 
immediately, but affects the internal energy (such as rotational energy) only after a 
certain time-lag, through inelastic collisions. The bulk viscosity is found to be 
proportional to the relaxation time between T and T,. 

One peculiarity of (A 2 )  is that as K + 0, p b  + 00 and so does the normal pressure 
in (A 3 ) .  At dilute concentrations where the actual gas molecules may be regarded as 
point masses and collisions between particles are relatively infrequent, there exists 
no obvious means by which the pressure can be larger than usual for the case of K 
being small. This is one of the defects of the rough-sphere model. Further discussion 
on this can be found in Chapman & Cowling. 

Owing to the peculiar behaviour of the relaxation term, the bulk viscosity given 
in (A 1 )  does not reduce to the classical result for the case of dense smooth hard-sphere 
gases, whereas the other constitutive relations derived by Theodosopulu & Dahler 
(19743) (except their collisional flux of translational energy) and all of those obtained 
in the present theory do. Their collisional flux of translational energy will be 
discussed shortly. Note that in order to reduce the results of Theodosopulu & Dahler 
to the smooth-sphere case, one must first express the total temperature T in terms 
of T and T, accordingly in the relationships. 
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According to the kinetic theory of dense smooth hard-sphere gases (Chapman & 
Cowling 1970, p. 306), the bulk viscosity basically originates from the fact that gas 
particles are finite. Especially in dense concentrations, the finite size effects of 
particles can be significant. As a result of a spatial expansion of the pair velocity 
distribution function about the contact point between two colliding particles, one 
can obtain the bulk viscosity by computing the rate of collisional transfer of linear 
momentum. The expression for ,ub so obtained is just the volumetric term given in 
(A 1). The interpretation of this term is rather obvious. It represents the resistance 
of finite gas particles towards deformation as a result of collisional transfer of linear 
momentum caused by either expansion or contraction of the gas. In the dilute 
concentration limits, this term vanishes, signifying the absence of the finite size 
effects of particles. This is consistent with the physics of dilute gases in which 
particles may be regarded as point masses and they pose little resistance in either 
expansion or contraction. 

In the present study of slightly inelastic and slightly rough spheres, the rate of 
change of translational and rotational energies are each governed by the conservation 
equations (3.8) and (3.9). For example, the ratio of T, to ? given in (5.2) for the case 
of simple shear flow is derived from (3.9) and is plotted in figure 1. Since equipartition 
of energy is not realized in general owing to possible energy dissipation through 
inelastic and frictional collisions, the two terms involving and T, in the 
perturbation function 4 which gave rise to the relaxation term in the bulk viscosity 
according to the theory of Theodosopulu & Dahler (1974b), Dahler & Theodosopulu 
(1975) are neglected in the present analysis. As a result, the present ,ub in (4.14) differs 
from (A 1) by the omission of the relaxation term. Nevertheless, (4.14) is consistent 
with the ,ub obtained in the kinetic theory of dense smooth hard-sphere gases, 
whereas (A 1) is not. 

Theodosopulu & Dahler (1974b) obtained the following result for the collisional 
flux of translational energy : 

Note that we have neglected the kinetic flux of angular momentum, L,, term in (A 4) 
for the reason mentioned previously in 54. The omission of L, would not affect any 
of the results discussed below. Taking e = 1 and p = 1 for the case of perfectly elastic 
and perfectly rough spheres, the present theory in (4.17) yields the following result for 
the collisional flux of translational energy : 

The result of Theodosopulu & Dahler in (A 4) differs from the present one in (A 5 )  in 
two respects. First, the qtk term (i.e. the first term) in (A 4) differs from that in (A 5 )  by 
an algebraic expression of parameter K in front. Secondly, (A 4) has an extra qrk term 
(i.e. the second term). To examine these discrepancies, we take e = 1 and B = - 1 in 
(4.17) corresponding to the case of perfectly elastic and perfectly smooth spheres. 
The present result checks with the one obtained in the kinetic theory of smooth dense 
hard-sphere gases (Chapman & Cowling 1970) whereas (A 4) does not. This provides 
a verification not only for the numerical values in the algebraic expression of 
parameter K but also the independence of qrk as well. It seems possible that some 
numerical errors were made in the computations of Theodosopulu & Dahler. 
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